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Recherche N0 8576 du CNRS,
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Abstract

PAL is a glucose/mannose-specific lectin isolated from Pisum arvense seeds. Previously, we demon-

strated the capacity of other leguminous lectins to induce oedema formation and neutrophil

stimulation. To investigate the potential pro-inflammatory activity of PAL, we have studied its ability

to induce neutrophil migration into peritoneal cavities of rats and neutrophil chemotaxis in-vitro.

The role of resident cells and sugar residues on PAL activity was analysed. PAL or saline (control) were

administered intraperitoneally to rats, and total and differential leucocyte (macrophages, neutro-

phils and mast cells) counts were performed. The role of resident cells on the PAL effect was

evaluated using three strategies: reducing the total resident cell population by lavage of rat cavities

with saline; increasing macrophage population by treating animals with thioglycolate; and deplet-

ing mast cell population by subchronic treatment of rats with compound 48/80. PAL induced in-vitro

and in-vivo neutrophil migration. In-vivo, PAL (50, 100, 200 and 300�g) significantly (P<0.05) and

dose-dependently increased neutrophil migration by 600, 740, 900 and 940%, respectively, showing

maximal effect 4 h after injection. PAL induced mononuclear cell migration. The neutrophil stimu-

latory effect of PAL was potentiated in animals treated with both thioglycolate and compound 48/

80. The indirect lectin chemotactic effect was shown in rats injected with supernatant from cultured

macrophages stimulated by PAL. In conclusion, PAL was shown to exhibit in-vivo and in-vitro pro-

inflammatory activity. The in-vivo effect seemed to occur by a dual mechanism that was indepen-

dent, but also dependent, on resident cells.

Introduction

Neutrophil migration from the blood into affected tissues is the hallmark of acute inflam-
matory reactions. The recruitment of these cells involves a complex and multi-mediated
process which is possible by intercellular signalling (McEver 1992). This mechanism
involves interaction of endothelial cells and neutrophils via recognition between lectins
and adhesion molecules expressed on these cell surfaces (Rabinowich 1996; Kieda 1998).
Constitutively, cells express adhesion molecules (Kieda 1998), but under inflammatory
processes or other pathologic conditions these molecules are over expressed (Barnes &
Adcock 1997). It seems clear that this over expression is mediated by pro-inflammatory
cytokines released by resident cells (macrophages, mast cells and endothelial cells), acti-
vated by bacterial products (lipopolysaccharide), pathogen proteins and cytokines (Hogan
& Schwartz 1997; Ishii et al 1997). After activation, a coordinated expression of multiple
inflammatory genes takes place, including cytokines and neutrophil chemoattractants,
such as interleukin 8 (IL-8), macrophage inflammatory protein-1 and -2 (MIP-1, MIP-2),
cytokine-induced neutrophil chemoattractant (CINC), eotaxin, enzymes and adhesion
molecules (Driscoll et al 1993; Barnes & Adcock 1997; Ishii et al 1997).

Lectins are (glyco)proteins of non-immune origin that interact reversibly and
specifically with carbohydrates (Peumans & van Damme 1995). They are widely
distributed in nature, and amongst the plant kingdom. The legume lectins are a large



family of carbohydrate binding proteins found mainly in
seeds (Lis & Sharon 1986; Moreira et al 1991; Cavada et al
1998). These glycoproteins, in particular of plant origin,
have been considered important tools in glycobiochemis-
try and glycobiology studies (Rudiger 1998). Lectins have
been shown to present stimulatory effects in different
biological models. These proteins can induce in-vivo neu-
trophil migration and paw oedema formation (Assreuy
et al 2002; Alencar et al 2003, 2004; Freire et al 2003),
in-vitro cytokine release (Assreuy et al 2003), nitric oxide
production from human peripheral blood mononuclear
cells (Andrade et al 1999), and lymphocyte apoptosis
(Barbosa et al 2001). Pisum arvense is a lectin obtained
from the seeds of Pisum arvense (Leguminosae,
Papilionoideae, Vicieae) that possesses binding affinity
for glucose/mannose residues. In solution the pure protein
has a molecular mass of 50 kDa, determined by size exclu-
sion chromatography (Cavada et al 2003). In this study,
we have investigated the lectin from Pisum arvense
seeds on the induction of neutrophil migration into rat
peritoneal cavities and its ability to stimulate these cells
in-vitro.

Materials and Methods

Animals

Male and female Wistar rats (150–200 g) obtained from
our own animal facilities were housed (n¼ 5 per cage) in a
temperature-controlled room, with water and food freely
available. The experimental protocols were approved by
the Institutional Animal Care and Use Committee of the
Federal University of Ceará, Fortaleza-CE, Brazil, in
accordance with internationally accepted principles.

Lectin

Lectin from Pisum arvense seeds was isolated as described
by Cavada et al (2003). Briefly, the fine seed flour was
suspended in water (1:10 w/v) under agitation for 3 h at
25�C and then centrifuged for 20min (16 000 g at 4�C).
The clear supernatant was fractionated by ammonium sul-
fate precipitation (0/60) for 4 h and centrifuged as above.
The precipitate was dissolved in 0.1M phosphate-buffered
solution pH 7.2 (PBS), dialysed for 48h against the same
buffer, filtered, and submitted to affinity chromatography
on a Sephadex G-100 column (cross-linked dextran for
purification of glucose/mannose lectins). After the absor-
bance at 280nm of the flow-through fraction reached base-
line level, the lectin was eluted with 0.1M glucose in PBS,
and the lectin fractions were further submitted to dialyses
against 1.0M acetic acid (1h) and distilled water, and then
lyophilized. The purity of each lectin preparation was moni-
tored by SDS-polyacrylamide gel electrophoresis.

Drugs

N-formylmethionyl-leucyl-phenylalanine (fMLP), com-
pound 48/80 and �-D(þ)-mannose were from Sigma-

USA; fluid thioglycolate medium and lipopolysaccharide
(LPS) from Escherichia coli 001:BA were from Difco-
USA. All other chemicals were of analytical grade.

Evaluation of the lectin activity on leucocyte

migration in the peritonitis model

The lectin of Pisum arvense (PAL) was dissolved in 0.15M

sterile saline and injected intraperitoneally (i.p.) into rats at
50, 100, 200 or 300�gmL�1. The dose range was chosen
based on the pro-inflammatory effect of other leguminous
lectins (Alencar et al 2003). The control group received
sterile saline only by the same route. After 4 h, the time
shown to present maximal neutrophil migration, animals
were killed and cells harvested by washing each peritoneal
cavity with 10mL saline (5 IU heparin mL�1). Total and
differential cell counts were performed according to Souza
& Ferreira (1985). Briefly, 20�L peritoneal fluid was
diluted 1:20 (v/v) in Turk solution for total cell counts in a
Neubauer chamber. For differential counting (neutrophils,
eosinophils, mast cells and mononuclear cells), 25�L peri-
toneal fluid was centrifuged at 400 g for 10min, applied to a
glass slide, and stained with HEMA III. One hundred cells
were counted using an optical microscope with immersion
objective of 100-times. The time course of neutrophil and
mononuclear cell migration was determined at 2, 4, 8, 24, 48
and 72h after intraperitoneal injection of 200�g PAL, the
dose that promoted sub-maximal effect. Results were
expressed as mean� s.e.m. of the number of cells per mL
of peritoneal wash of at least five different animals.

Depletion of total peritoneal resident cell

population by peritoneal lavage

The number of resident cells was diminished by lavage with
sterile saline (Faccioli et al 1990). Rats were anaesthetized
with ethyl-ether and three hypodermic needles were
inserted into the abdominal cavity. Saline (30mL) was
injected through the needle placed near the sternum. The
cavities were then gently massaged for 1min and peritoneal
fluid was collected via two needles inserted into the inguinal
region. This operation was repeated three times. Control
(sham) rats were impaled and manipulated in the same way
but no fluid was injected or withdrawn. After 30min, resi-
dent cells were estimated by injecting 10mL saline–heparin,
as described above. PAL (200�g) or fMLP (10�7mol) was
injected intraperitoneally into other depleted and sham rats
for the neutrophil migration, and evaluated 4h later
(Ribeiro et al 1997).

Increasing peritoneal macrophage population

by treatment with thioglycolate

Thioglycolate (3%w/v, 10mL) was injected into perito-
neal cavities and after four days peritoneal macrophages
were collected, counted and compared with the number
obtained from a group of non-thioglycolate-treated ani-
mals (control). Saline (1mL/cavity) or PAL (200�gmL�1/
cavity) was injected intraperitoneally into control and
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thioglycolate-treated rats and neutrophil migration was
evaluated after 4 h. The number of residual neutrophils
in the peritoneal washes (saline group) was subtracted
from the number of neutrophils, which appeared after
stimuli administration in the thioglycolate-treated
animals.

Depletion of peritoneal mast cell population by

sub-chronic treatment with compound 48/80

Animals were treated intraperitoneally twice a day with
compound 48/80 for four days, 0.6mg kg�1 for the first
three days, and 1.2mg kg�1 on the fourth day. On the fifth
day, depletion of mast cell population was estimated in a
group of treated and non-treated animals by counting the
number of mast cells present in their peritoneal cavities.
For this, the peritoneal fluid was diluted (1:20) in toluidine
blue and cells stained for approximately 2–3min. The
number of mast cells was assessed by conventional light
microscopy (40�) using a Neubauer chamber. The counts
obtained from treated animals were compared with the
non-treated group (control) (Di Rosa et al 1971). Saline
(1mL/cavity) or PAL (200�gmL�1/cavity) was then
injected into remaining rats (control and compound 48/
80-treated) and after 4 h the neutrophil migration induced
by these chemotactic stimuli was evaluated as described
earlier.

Effect of a-D-mannose on the neutrophil

migration induced by PAL

To investigate the involvement of the lectin specific bind-
ing sugar, �-D(þ)-mannose, on the PAL-induced neutro-
phil migration, rats received intraperitoneally 1mL of the
following solutions: PAL (200�g), saline (0.15M), �-D(þ)-
mannose (0.1 M) alone or in solution with PAL (200�g).
The solution (PALþ�-D(þ)-mannose) was incubated at
37�C for 30min, for binding, before administration, and
the neutrophil migration was evaluated 4 h later.

Induction of neutrophil migration by injection of

the supernatant from macrophage cultures

activated by PAL

Rat peritoneal macrophages were harvested with RPMI
medium (pH 7.4) four days after intraperitoneal injection
of 3% thioglycolate (10mL/cavity) and cultured in plastic
dishes (24 wells, 106 cellsmL�1/well) for 1 h at 37�C in 5%
CO2. Non-adherent cells were removed by three washes
with 1mL RPMI and the adherent cell population (95%
macrophages) was maintained in the same conditions
(Assreuy et al 2003). After 24 h, cells were incubated for
60min in fresh medium or in medium containing PAL
(300�gmL�1). Subsequently, supernatants were dis-
carded and after three further washes, cells were incubated
for 3 h with medium (1.5mL) without any stimulus. For
testing the possible release of chemoattractants, 1mL of
the above solutions was injected into peritoneal cavities of
naive rats and neutrophil migration was assessed 4 h later.

In-vitro neutrophil chemotaxis induced by PAL

Blood from normal volunteers (5mL) was drawn into
15-mL heparinized (5 IU heparin mL�1) centrifuge tubes.
Neutrophils were isolated by centrifugation with 4.5mL
Ficoll-hypaque (density 1.114) (ICM Biomedicals, Inc.),
300 g for 30min at room temperature. Neutrophils were
washed three times with 5mL RPMI (5 IU heparin mL�1)
containing 0.1% BSA, at 100g for 10min at room tem-
perature. The cell viability was >99% as determined by
Trypan blue exclusion. A 50-�L sample of the neutrophil
suspension (106 cells mL�1) was placed in the upper wells of
a 48-well modified Boyden chamber (Neuro Probe, Cabin
John, MD) equipped with a Nucleopore polycarbonate
filter (3-�m pore size). In the lower wells, the following
were added: 27�L RPMI/0.1% BSA (negative control),
10�7

M fMLP (positive control (Milanowski et al 1995) or
PAL (12.5, 25, 50, 100, 200, 400�gmL�1 in RPMI/0.1%
bovine serum albumin, BSA). Following incubation at
37�C in 5% CO2 for 60min, cells retained in the filter
were stained with Diff-Quik (Baxter, IL), on glass micro-
scope slides. The neutrophils which reached the lower
surface were counted in five fields using oil-immersion
objective (�100) for each set of wells (Boyden 1962; Ishii
et al 1997).

Statistical analysis

All data are presented as means� s.e.m. One-way analysis
of variance, followed by Bonferroni test for multiple com-
parisons were used. A value of P<0.05 was considered to
be statistically significant.

Results

The intraperitoneal injection of PAL (50, 100, 200 and
300�g) to rats caused a significant and dose-dependent
neutrophil migration (P<0.05) 4 h after injection. This
effect was 600, 740, 900 and 940% higher, respectively,
compared with the saline-treated group (Figure 1A). The
200-�g dose showed maximal response and so was chosen
for subsequent experiments. The time-course assay demon-
strated that the PAL-induced neutrophil migration was
already significant 2 h after injection, with maximal
response 4 h after lectin administration, decreasing there-
after and reaching control levels at 24h. PAL also induced
mononuclear migration and the number of these cells
increased as the neutrophil count reduced (Figure 1B).
Additionally, the intraperitoneal administration of 200�g
PAL, co-incubated with 0.1M of its specific binding sugar
�-D-mannose, resulted in a 33% reduction of the neutrophil
migration, compared with that induced by PAL alone
(Figure 2). The participation of resident cells in the neutro-
phil stimulation induced by PAL was also analysed.
Depletion of 83% (Figure 3A) of the total resident perito-
neal cells by previous lavage of the peritoneal cavity did not
alter the neutrophil migration induced by PAL (200�g),
similar to that produced by fMLP (10�7

M), a classical direct
neutrophil chemoattractant (Figure 3B). However, the
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increase in peritoneal macrophage population by pre-treat-
ing animals with thioglycolate enhanced the PAL-induced
neutrophil migration (Figure 4B). In addition, when the
peritoneal mast cell population was depleted by sub-chronic
treatment of rats with compound 48/80, the PAL-induced
neutrophil migration was potentiated (Figure 5).

As can be seen in Figure 6, injection of the supernatant
from macrophage cultures, incubated either with PAL
(300�gmL�1) or with lipopolysaccharide (10�gmL�1)
for 60min, into rat peritoneal cavities induced significant
neutrophil migration compared with the effect of the
supernatant obtained by incubation of macrophages
with fresh medium. Furthermore, the in-vitro neutrophil
chemotactic effect observed after addition of increasing
doses of PAL (12.5, 25, 50, 100, 200 and 400�gmL�1) into

a 48-well chemotaxis chamber was dose-dependent
(Figure 7), compared with RPMI (negative control).

Discussion

The intraperitoneal injection of PAL caused significant
and dose-dependent neutrophil and mononuclear cell
migration in-vivo. The effect was inhibited by previous
incubation of the lectin in solution with mannose, a
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sugar specifically recognized by the lectin. This finding
supported the hypothesis that this biological effect
involved the lectin domain, among others. It was observed
in-vitro that PAL caused a neutrophil chemotactic effect,
similar to fMLP, a classical direct chemoattractant, show-
ing apart from the in-vivo activity on neutrophils, a
chemoattractant effect in-vitro. It was found that after
depleting the number of peritoneal resident cells by pre-
vious lavage of the cavities with sterile saline, the neutro-
phil migration induced by PAL was not altered.

Surprisingly, a threefold increase in macrophage popula-
tion by previous administration of thioglycolate led to
an enhancement of the PAL-induced neutrophil migra-
tion. This result might indicate that PAL exerted a para-
crine effect on macrophages, stimulating the release of
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neutrophil chemotactic factors. Moreover, the intraperi-
toneal injection of the supernatant from cultured macro-
phages stimulated with PAL induced significant
neutrophil migration to the animal peritoneal cavities.
The same effect was observed after injection of the super-
natant from macrophage cultures incubated with the bac-
terial lipopolysaccharide, LPS, a well known neutrophil
chemoattractant. These findings suggested that PAL
appeared to induce the in-vivo neutrophil migration by
an indirect mechanism, dependent on the release of neu-
trophil chemotactic factors from resident macrophages.
However, the depletion of resident mast cells by approxi-
mately 80% by subchronic treatment with compound 48/
80 (Di Rosa et al 1971) potentiated the number of poly-
morphonuclear neutrophils which emigrated in response
to PAL. The role of mast cells in the neutrophil migration
activity induced by PAL deserves further investigation. It
is possible that mast cells could be releasing inhibitory
neutrophil chemotactic factors. In fact, after activation
mast cells might contribute to the regulation of macro-
phage activity (Dackin et al 1995; Rodgers & Xiong 1996;
Assreuy et al 2003). Additionally, it has been suggested
that inhibitory cytokines such as IL-4 and IL-10 are
involved in the control of the immune and inflammatory
response (Cunha et al 1999). In-vivo, the neutrophil
migration in response to inflammatory stimuli is an
event mediated by a direct (e.g. fMLP) or an indirect
(e.g. LPS) mechanism, dependent on resident cells. The
indirect mechanism clearly involved factors such as cyto-
kines, chemoattractant factors, etc., released from mast
cells, macrophages and endothelial cells, after antigen
recognition (Andrade et al 1999; Rudd et al 1999; Klein
et al 2001).

It has been established that lectins can stimulate
macrophages to produce cytokines and nitric oxide
(Barral-Netto et al 1992; Baldus et al 1995; Andrade et al
1999; Lima et al 1999). Also, mast cells have been
described to be stimulated by concanavalin A and fibro-
blasts (Wu et al 1993; Kulkarni & McCulloch 1995).

Although this study did not fully elucidate the type of
the chemoattractant substance released by macrophages,
it clearly indicated these cells as a source of the sub-
stance. Moreover, it is important to emphasize a modu-
lator role of mast cells, controlling macrophage activity.
Thus, the ongoing investigation in the search for a more
precise mechanism of action indicates that lectins might
be important tools and very useful for studying several
aspects of the inflammatory process, especially the cellu-
lar events.

Conclusion

Our results showed that PAL was able to induce in-vitro
and in-vivo neutrophil migration. The in-vivo effect
seemed to occur by a dual mechanism which was indepen-
dent but also dependent on resident cells. The indirect
mechanism possibly occurred due to the release of che-
moattractant factors by resident macrophages. Fur-
thermore, mast cells were shown to play a physiological

role, negatively modulating the in-vivo neutrophil migra-
tion induced by Pisum arvense lectin.
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